Nfl Predictions Spreadsheet
Are you curious whether or not your favorite football team will win this week? What if I told you there was a way to predict the outcome of every match up in the NFL? With the use of Microsoft Excel and Data Analysis, that is precisely what I did for Week 12 of the 2018 NFL season and I will show you how I did it.
- Espn Nfl Point Spread Predictions
- Nfl Predictions Spreadsheet Predictions
- Excel Nfl Football Predictions Spreadsheet
- Nfl Predictions Against The Spread
Before I dive into my method and results, I want to credit Mr. Terrence Davis and his article 'PREDICTING NBA FAVORITES WITH MICROSOFT EXCEL and DATA SCIENCE' for inspiring me to start this project.
Click HERE to access the full Microsoft Excel Workbook.
NFL computer picks are computer-generated NFL outcomes that rely only on facts and figures to provide the top, unbiased stats-driven simulated NFL predictions for every game each week over the course of the entire NFL season. NFL computer picks are popular because football bettors trust the accuracy of a computer’s algorithm over human influence. Get our top NFL picks for every game of the 2020/21 season including our NFL picks against the spread. We dive into the data, betting trends, team news, and a lot more to bring you the best expert NFL picks each week. Check out our NFL predictions and NFL best bets pages for our top plays on today’s NFL. In our picks and predictions against the spread for Week 17 of the 2020 NFL season, the Cowboys take care of business vs. The Giants and win the NFC East thank to help from the Eagles. NFL picks of the week. Free NFL expert picks for every NFL game of the season. Including NFL Picks Against The Spread, Moneyline, Points Totals. Week 4 of the NFL season is upon us. I provide the spreads and my predictions for this upcoming week. It was bound to happen, but COVID-19 has officially altered the NFL's weekly schedule.
Data Collection
Prior to making any predictions, the first thing you must do is collect your data. I am looking to predict the outcomes for each of the games during Week 12 of the 2018 NFL season. So, I determined that the 2018 Team Offense and Defense statistics of each team (before Week 12) would serve as a good indicator of how each team ranks so far. In regards to NFL data, Pro Football Reference is a wonderful resource that offers an abundant amount data. From here I was able to import the 2018 Team Offense and Defense data to Microsoft Excel with ease by using the 'Get as Excel Workbook (experimental)' feature.
Determining the Relevant Variables
Too much irrelevant data can be a problem. After importing the Team Offense and Defense tables from Pro Football Reference to Microsoft Excel, I was overwhelmed by the twenty-five columns of statistics. Therefore, I needed to filter out the data into only the variables that I deemed most relevant to a team's ability to win.
What are the most important variables that are used in determining an NFL team's ability to win? The answer to this question varies depending on your opinion. Personally, I feel that these variables are the best determinants of an NFL team's ability to win:
- Margin - Difference between Points For (PF) and Points Against (PA)
- Sc% OFF - Percentage of drives ending in an offensive score for
- TO% OFF - Percentage of drives ending in an offensive turnover
- YdsPen OFF - Penalty yards committed by offense
- Sc% DEF - Percentage of drives ending in an offensive score against
- TO% DEF - Percentage of drives ending in a defensive turnover
- YdsPen DEF - Penalty yards committed by defense
Using only these variables, you can now transform your data into a less intimidating table:
By carefully studying the variables, you may conclude that the Margin variable is determined by the other six variables. Therefore, the dependent variable of my data set is Margin and the independent, a.k.a. explanatory, variables are Sc% OFF, TO% OFF, YdsPen OFF, Sc% DEF, TO% DEF, YdsPen DEF. This information will be important for the next step.
How to Make Use of the Data
With all of this data, you need to create a relationship between your variables that will serve as a formula for computing your ratings. Linear regression is a good way to model the relationship between two variables (dependent and independent) of a data set. Since we previously determined that this model contains a dependent variable that is explained by several independent variables, linear regression is the method that we will use.
In Microsoft Excel, you can run a linear regression by going into the Data tab, then clicking Data Analysis and scrolling down to Regression. The Input Y Range (dependent variable) in my model is the Margin column. The Input X Ranges (independent variables) are the columns containing Sc% OFF, TO% OFF, YdsPen OFF, Sc% DEF, TO% DEF, YdsPen DEF. Once your linear regression is set-up, simply press OK to see your results.
The results of this linear regression were good. The regression output determined that there was an R Squared value of 0.9077 which, as expected, tells me that there is a strong relationship between the X and Y Ranges. Using the coefficients in the regression summary, this is the formula that I will use to determine each teams' rating:
Here is how you can read the formula:
Espn Nfl Point Spread Predictions
- Every 1% increase in offensive scoring percentage increases the team rating by 641.938
- Every 1% increase in offensive turnover percentage decreases the team rating by 61.934
- Every 1 yard increase in offensive penalty yards decreases the team rating by 0.015
- Every 1% increase in offensive scoring percentage against decreases the team rating by 691.225
- Every 1% increase in defensive turnover percentage increases the team rating by 163.596
- Every 1 yard increase in defensive penalty yards increases the team rating by 0.028 (positive value for this coefficient is counter-intuitive)
Nfl Predictions Spreadsheet Predictions
Ranking Each Team
With a formula in place, all you have to do now is calculate the rating of each team by inputting the variable data into the rating formula. The VLOOKUP() and SUM() functions in Microsoft Excel make this an easy task.
Now, you can rank the teams based on their rating. The higher the rating, the better the rank (1 = Best, 32 = Worst).
Predictions & Results
With each teams' rankings calculated, I simply created a table with each of the Week 12 match ups and predicted the winner based off of which team had the better rank.
As you can see, this ranking system correctly predicted 11 out of 15 games! In comparison, ESPN's Week 12 Power Rankings correctly predicted 10 out of 15 games.
Excel Nfl Football Predictions Spreadsheet
Conclusion
Nfl Predictions Against The Spread
Obviously, there is no perfect method for predicting the outcome of a football game or any sports event for that matter. There are simply too many unpredictable variables to account for. However, by choosing your variables wisely it is evident that you can make a quality prediction.